
1

Nils Adermann
Co-Founder, Packagist Conductors

@naderman - n.adermann@packagist.com

Developing and Deploying
Magento with Composer:

Best Practices

Your Company logo

#MM18DE

Source

#MM18DE

Source

#MM18DE

• Third Parties

• Packagist https://packagist.org

• Magento Marketplace https://marketplace.magento.com

• Individual vendors' repositories

• Private Packages

• Any git/svn/mercurial/... repository

• GitHub, Bitbucket, GitLab

• Private Packagist https://packagist.com

Package Repositories

#MM18DE

• Nearly 200k packages on packagist.org

• Many useful well tested, maintained and secure packages

• Large amounts of unmaintained, insecure, broken, or poorly working code

LeveragingOpen-Source Packages

#MM18DE

• Evaluate packages every time before you write code yourself

• Selection criteria

• Quality of documentation (changelogs?)

• Development activity (commits, issues, PRs)

• Number of maintainers

• Installation counts, GitHub stars

• Complexity

• It's all trade-offs – no golden rule

LeveragingOpen-Source Packages

#MM18DE

• Apply similar criteria as for open-source packages

• Additional factors to consider

• Cost

• Licenses

• Reviews / Ratings

• Extension Quality Program

Magento Marketplace

#MM18DE

• "repositories": [

{"type": "path", "url": "../core"}

],

• "repositories": [

{"type": "vcs",

"url": "https://github.com/naderman/symfony" }

],

• "repositories": [

{"type": "composer",

"url": "https://repo.packagist.com/my-org/" }

],

Using your private code with Composer

#MM18DE

Development Environment
Best Practices

#MM18DE

• composer create-project

--repository-url=https://repo.magento.com/magento

/project-community-edition <path>

• composer.json will have the correct contents

• Different from forking the community edition

• Magento/project-community-edition is a metapackage

• No code

• Defines dependencies on a number of other packages

• Only clone if you're trying to contribute to a repository directly

create-project instead of cloning

#MM18DE

• Exact Match 1.0.0 1.2.3-beta2 dev-master

• Wildcard Range 1.0.* 2.*

• Hyphen Range 1.0-2.0 1.0.0-2.1.0
>=1.0.0 <2.1 >=1.0.0 <=2.1.0

• Unbounded Range >=1.0
Bad!

• Next Significant Release ~1.2 ~1.2.3
>=1.2.0 <2.0.0 >=1.2.3 <1.3.0

• Caret/Semver Operator ^1.2 ^1.2.3
Best Choice for Libraries >=1.2.0 <2.0.0 >=1.2.3 <2.0.0

Operators: " " AND, "||" OR

Managing Updates: Constraints

#MM18DE

• Order dev -> alpha -> beta -> RC -> stable

• Automatically from tags

• 1.2.3 -> stable

• 1.3.0-beta3 -> beta

• Automatically from branches

• branch name -> version (stability)

• 2.0 -> 2.0.x-dev (dev)

• master -> dev-master (dev)

• myfeature -> dev-myfeature (dev)

• Choosing
• "foo/bar": "1.3.*@beta"

• "foo/bar": "2.0.x-dev"

• "minimum-stability": "alpha"

Managing Updates: Stabilities

#MM18DE

x.y.z
(BC-break).(new functionality).(bug fix)

https://semver.org

Managing Updates: Semantic Versioning

#MM18DE

Promise of Compatibility

X.Y.Z

• Must be used consistently

• Dare to increment X!

• Only valuable if BC/compatibility promise formalized

• https://devdocs.magento.com/guides/v2.0/contributor-guide/backward-compatible-development/

• http://symfony.com/doc/current/contributing/code/bc.html

• Document breaks in changelog

Managing Updates: Semantic Versioning

#MM18DE

• composer update

• No isolation of problems unless run very frequently

• composer update <package...>

• Explicit conscious updates

• composer update --dry-run [<package...>]

• Understanding and preparing effects of updates

• Read CHANGELOGs

• composer outdated

Managing Updates

#MM18DE

composer why [--tree] foo/bar

mydep/here 1.2.3 requires foo/bar (^1.0.3)

composer why-not [--tree] foo/bar ^1.2

foo/bar 1.2.3 requires php (>=7.1.0 but 5.6.3 is installed)

Managing Updates: Unexpected Results

#MM18DE

{

"name": "zebra/zebra",

"require": {

"horse/horse": "^1.0"

}}

{

"name": "giraffe/giraffe",

"require": {

"duck/duck": "^1.0"

}}

Managing Updates: Partial Updates

#MM18DE

{

"name": "horse/horse",

"require": {

"giraffe/giraffe": "^1.0"

}}

{

"name": "duck/duck",

"require": {}

}

Managing Updates: Partial Updates

#MM18DE

{

"name": "my/project",

"require": {

"zebra/zebra": "^1.0",

"giraffe/giraffe": "^1.0"

}

}

Managing Updates: Partial Updates

#MM18DE

Managing Updates: Partial Updates

Project zebra 1.0

giraffe 1.0 duck 1.0

horse 1.0

Now each package releases version 1.1

#MM18DE

Managing Updates: Partial Updates

Project zebra 1.1

giraffe 1.0 duck 1.0

horse 1.0

$ composer update zebra/zebra

Updating zebra/zebra (1.0 -> 1.1)

#MM18DE

Managing Updates: Partial Updates

Project zebra 1.1

giraffe 1.0 duck 1.0

horse 1.1

$ composer update zebra/zebra --with-dependencies

Updating horse/horse(1.0 -> 1.1)

Updating zebra/zebra (1.0 -> 1.1)

#MM18DE

Managing Updates: Partial Updates

Project zebra 1.1

giraffe 1.1 duck 1.0

horse 1.0

$ composer update zebra/zebra giraffe/giraffe

Updating zebra/zebra (1.0 -> 1.1)

Updating giraffe/giraffe(1.0 -> 1.1)

#MM18DE

Managing Updates: Partial Updates

Project zebra 1.1

giraffe 1.1 duck 1.1

horse 1.1

$ composer update zebra/zebra giraffe/giraffe --with-dependencies

Updating duck/duck(1.0 -> 1.1)

Updating giraffe/giraffe(1.0 -> 1.1)

Updating horse/horse(1.0 -> 1.1)

Updating zebra/zebra(1.0 -> 1.1)

#MM18DE

Managing Updates: Partial Updates

Project zebra 1.1

giraffe 1.1 duck 1.1

horse 1.1

$ composer update zebra/zebra --with-all-dependencies

Updating duck/duck(1.0 -> 1.1)

Updating giraffe/giraffe(1.0 -> 1.1)

Updating horse/horse(1.0 -> 1.1)

Updating zebra/zebra(1.0 -> 1.1)

#MM18DE

• Contents

• All dependencies including transitive dependencies

• Exact version for every package

• Download URLs (source, dist, mirrors)

• Hashes of files

• Purpose

• Reproducibility across teams, users, and servers

• Isolation of bug reports to code vs. potential dependency breaks

• Transparency through explicit updating process

Managing Updates: The Lock File

#MM18DE

Commit The Lock File
Every composer install without a lock file is a

catastrophe waiting to happen

#MM18DE

The Lock File Will Conflict

#MM18DE

master

composer.lock

- zebra 1.0

- giraffe 1.0

Day 0: "Initial Commit"

Project

zebra 1.0 giraffe 1.0

Project

zebra 1.0 giraffe 1.0

dna-upgrade

composer.lock

- zebra 1.0

- giraffe 1.0

#MM18DE

master

composer.lock

- zebra 1.1

- giraffe 1.0

- duck 1.0

Week 2: Strange new zebras require duck

Project

zebra 1.1 giraffe 1.0

Project

zebra 1.0 giraffe 1.0

dna-upgrade

composer.lock

- zebra 1.0

- giraffe 1.0

duck 1.0

Week 3: Duck 2.0

#MM18DE

master

composer.lock

- zebra 1.1

- giraffe 1.0

- duck 1.0

Week 4: Giraffe evolves, requires duck 2.0

Project

zebra 1.1 giraffe 1.0

Project

zebra 1.0 giraffe 1.2

dna-upgrade

composer.lock

- zebra 1.0

- giraffe 1.2

duck 1.0 duck 2.0

#MM18DE

master

composer.lock

- zebra 1.1

- giraffe 1.0

- duck 1.0

- duck 2.0

Text-based Merge

Project

zebra 1.1 giraffe 1.2

duck 1.0

Merge results in invalid dependencies

duck 2.0

#MM18DE

git checkout <refspec> -- composer.lock

git checkout master -- composer.lock

Reset composer.lock

Project

zebra 1.1 giraffe 1.0

dna-upgrade

composer.lock

- zebra 1.1

- giraffe 1.0

- duck 1.0

duck 1.0

#MM18DE

composer update giraffe --with-dependencies

Apply the update again

Project

zebra 1.1 giraffe 1.2

master

composer.lock

- zebra 1.1

- giraffe 1.2

- duck 2.0

duck 1.0

#MM18DE

• composer.lock cannot be merged without conflicts

• Contains hash over relevant composer.json values

• git checkout <refspec> -- composer.lock

• git checkout master -- composer.lock

• Repeat: composer update <list of deps>

• Store parameters in commit message

• Separate commit for the lock file update

Resolving composer.lock merge conflicts

#MM18DE

• composer validate

• Will inform you about problems like missing fields and warn about problematic
choices like unbound version constraints

• Do not publish multiple packages under the same name, e.g. CE/EE

• Names must be unique

Publishing Packages

#MM18DE

• Multiple runs

• composer install from lock file

• composer update for latest deps

• composer update --prefer-lowest --prefer-stable for oldest (stable) deps

Continuous Integration for Packages

#MM18DE

• require-dev in composer.json

• These packages won't be installed if you run
composer install --no-dev

• Use for testing tools, code analysis tools, etc.

• --prefer-source

• Clone repositories instead of downloading and extracting zip files

• Default behaviour for dev versions

• Allows you to push changes back into dependency repos

Development Tools

#MM18DE

Deployment
Best Practices

#MM18DE

• Unreliable or slow deployment process

• You will be scared to deploy

• You will not enjoy deploying

• Consequence: You will not deploy often

• Infrequent deploys increase risks

• You will not be able to spot problems as quickly

• Problems will fester over time

• Vicious Cycle

• Reliability and speed are key to breaking it

What properties should a deployment process have?

#MM18DE

• --prefer-dist

• Will always download zip files over cloning repositories

• Store ~/.composer/cache/ between builds

• How to do this depends on CI product/setup you use

Composer install performance

#MM18DE

• composer install --optimize-autoloader

• composer dump-autoload –optimize

• composer install --optimize-autoloader --classmap-authoritative

• composer dump-autoload –optimize --classmap-authoritative

• composer install --optimize-autoloader --apcu-autoloader

• composer dump-autoload –optimize --apcu

https://getcomposer.org/doc/articles/autoloader-optimization.md

Autoloader Optimization

#MM18DE

• Build process (move more into this)

• Install dependencies (Composer, npm, …)

• Generate assets (Javascript, CSS, …)

• Create an artifact with everything in it

• Deployment process (make this as small as possible)

• Move the artifact to your production machine

• sftp, rsync, apt-get install, …

• Machine dependent configuration

• Database modifications

• Start using new version

Reduce Dependence on External Services

#MM18DE

Never Deploy without a
composer.lock

#MM18DE

• Composer install loads packages from URLs in composer.lock

• Packagist.org is metadata only

• Open-Source dependencies could come from anywhere

• Solutions to unavailability

• Composer cache in ~/.composer/cache

• Unreliable, not intended for this use

• Fork every dependency

• Huge maintenance burden

• Your own Composer repository mirroring all packages

• Private Packagist

Reduce Dependence on External Services

#MM18DE

Development

• Make a checklist for new dependencies

• composer create-project

• SemVer: Don't be afraid to increase X

• Formalize BC promises for users of your
libraries

• composer update [--dry-run]
<package..>

• git checkout <branch> -- composer.lock
then replay composer update

• Document changes to dependencies

Summary

Deployment

• Document & automate build process

• Composer install --prefer-dist --optimize-
autoloader --no-dev

• Use a highly available Composer repository
(Private Packagist)

• Deploy more frequently

• Focus on reliability and speed of your
deployment process

• Deployingshould not be scary

Nils Adermann - @naderman – n.adermann@packagist.com

