
Composer 2.0

Nils Adermann
@naderman

Private Packagist
https://packagist.com

Nils Adermann
@naderman

Goals for 2.0

- Performance Improvements
- Better reproducibility

- Most serious 1.x bugs are edge cases which are difficult to debug and hard to reproduce

- Better error reporting
- New features which become easier to add by BC breaks/refactoring

- Keep upgrading as painless as possible

Why 2.0 at all and not 1.x?

Nils Adermann
@naderman

Improving Performance

- What makes Composer slow?
- I/O

- Network
- Metadata JSON downloads
- Package file downloads

- Memory access
- Writing, accessing and modifying GBs of memory

- CPU
- Sequential unpacking of code archives

Nils Adermann
@naderman

Improving Performance

What does Composer use memory for?

- JSON representation of every version of every package that may fit your requirements
- representation of dependencies/conflicts for SAT solver between all of these packages

Solutions

- Reduce number of package versions which “may fit my requirements”
- Represent dependencies/conflicts more efficiently

Nils Adermann
@naderman

Reduce number of package versions which “may fit my requirements”

- Composer 1 lazy loads packages while creating memory representation of dependencies
- Idea: Solver only loads what it needs when it gets to that point
- Problems

- Solver just waits for same info at a later point
- Impossible to reduce set of packages before generating dependencies
- Parallelized network access becomes hard to manage

Composer 2.0 refactors process into multiple clearly separated steps:

- Recursively download metadata only for package versions which may really get installed
- Reduce number of package versions in memory as far as possible
- Generate solver memory representation of dependencies

 => BC Break (for plugins) => 2.0

Nils Adermann
@naderman

Represent dependencies/conflicts more efficiently

SAT Solver takes boolean expressions, e.g.

foo/bar 1.0 requires baz/qux ^2.0 (- foo/bar 1.0 | baz/qux 2.0.0 | baz/qux 2.0.1 | baz/qux 2.1.0)
foo/bar 1.0 conflicts with baz/qux ^2.0 (- foo/bar 1.0 |- baz/qux 2.0.0) & (- foo/bar 1.0 |- baz/qux 2.0.1) &

(- foo/bar 1.0 |- baz/qux 2.1.0)

You can only install one version of a package
=> automatically generate a conflict for each pair of versions

foo/bar 1.0, 1.1, 1.2 (- foo/bar 1.0 |- foo/bar 1.1) & (- foo/bar 1.0 |- foo/bar 1.2) &
(- foo/bar 1.1 |- foo/bar 1.2)

Extreme Growth =

3 versions 6 versions 100 versions 500 versions 1000 versions
Composer 1 3 rules 15 rules 4,950 rules 124,750 rules 499,500 rules
Composer 2 1 rule 1 rule 1 rule 1 rule 1 rule

Composer 2.0 uses a special single multi conflict rule representation for all of these rules

foo/bar 1.0, 1.1, 1.2 oneof(foo/bar 1.0, foo/bar 1.1,foo/bar 1.2)

Nils Adermann
@naderman

Improving Performance: Network

- JSON Metadata & Package archive downloads

- Parallelization of HTTP requests with curl multi
- Use of HTTP/2 features to reduce server round-trips
- More reliable and feature complete than Composer 1 plugin implementations (hirak/prestissimo,

symfony/flex) which were limited by plugin interface

- Packagist.org protocol improvements

- Reduced amount of data transferred
- Stability improvements to packagist.org infrastructure

Note: Improvements require ext-curl

Nils Adermann
@naderman

Improving Performance: Archive Extraction

- Composer 2.0 unzips all downloaded archives in parallel
- Requires Linux/OS X/WSL
- Requires CLI command unzip in $PATH

Nils Adermann
@naderman

Improving Performance

- What makes Composer slow?
- I/O ✔

- Network ✔
- Metadata JSON downloads ✔
- Package file downloads ✔

- Memory access ✔
- Writing, accessing and modifying GBs of memory ✔

- Reduce number of package versions which “may fit my requirements” ✔
- Represent dependencies/conflicts more efficiently ✔

- CPU ✔
- Sequential unpacking of code archives ✔

Nils Adermann
@naderman

Improving Performance

- Benchmarks?
- Only anecdotal information so far

“Whoa, I tried Compsoer V2 alpha 1, nearly 80% faster on a composer install”

“Fast. Faster. Composer 2.0” “If you are still on PHP 7.3 you gain the most, Composer 2.x is about 2.5 times faster than
Composer 1.x. If you are already on PHP 7.4, Composer 2.x will be about 1.8 times faster. This is really impressive!”

“composer update Spryker is seeing 64% memory reduction & 51% less time - from 3.4GB to 1.2GB and down from 2 minutes
to 1 minute! Thanks to @sprysys for financially supporting this work through a Private Packagist subscription!”

https://twitter.com/sprysys

Better Reproducibility:

composer update
vs

composer install

Nils Adermann
@naderman

Separating update & install

Nils Adermann
@naderman

Separating update & install

vendor
 symfony/http-foundation 5.1.2 previous local upgrade attempt
composer.lock
 symfony/http-foundation: 4.4.10 old production state
composer.json
 symfony/http-foundation: 5.0.* limited upgrade for now, because of 5.1 issues

naderman@saumur:~/projects/composer/test/symfony-http-foundation$ composer update
Loading composer repositories with package information
Updating dependencies
Lock file operations: 0 installs, 1 update, 0 removals
 - Upgrading symfony/http-foundation (v4.4.10 => v5.0.10)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 3 installs, 1 update, 1 removal
 - Removing symfony/deprecation-contracts (v2.1.3)
 - Installing symfony/polyfill-php72 (v1.17.0): Extracting archive
 - Installing symfony/polyfill-intl-idn (v1.17.1): Extracting archive
 - Installing symfony/mime (v5.1.2): Extracting archive
 - Downgrading symfony/http-foundation (v5.1.2 => v5.0.10): Extracting archive
Generating autoload files
6 packages you are using are looking for funding.
Use the `composer fund` command to find out more!

New Features

Nils Adermann
@naderman

Ignoring specific platform requirements

Trying to test your project on PHP8?

composer update --ignore-platform-reqs
Installs on PHP8
May install packages requiring PHP extensions you do not have

composer update --ignore-platform-req=php
Installs on PHP8
Checks all extension requirements as usual

Nils Adermann
@naderman

Partial Updates to specific versions

// composer.json

 "require": {
 "symfony/http-foundation": “^4.0 || ^5.0",
 }

// composer.lock

 "packages": [
 {
 "name": "symfony/http-foundation",
 "version": "v4.4.10",

$ composer update symfony/http-foundation:5.0
Loading composer repositories with package information
Updating dependencies
Lock file operations: 0 installs, 1 update, 0 removals
 - Upgrading symfony/http-foundation (v4.4.10 => v5.0.0)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 0 installs, 1 update, 0 removals
 - Downloading symfony/http-foundation (v5.0.0)
 - Upgrading symfony/http-foundation (v4.4.10 => v5.0.0): Extracting archive

Nils Adermann
@naderman

Repository Priorities

- Repositories are canonical by default:
- First repository which has a package for a given name wins
- use “canonical”: false to restore old behavior of merging package versions

- Limit packages a repository can provide

{
 “type”: “composer”,
 “url”: “https://some-third-party.com/composer-repo/”,
 “only”: [“foo/*”, “bar/baz”],
 “exclude”: [“foo/qux”]
}

https://some-third-party.com/composer-repo/

Upgrading your projects

Nils Adermann
@naderman

Best Case

composer self-update --2
composer update / composer install

No errors, everything works as before.

Nils Adermann
@naderman

Upgrading issues with plugins

foo/bar requires composer-plugin-api ^1.0.0 -> no matching package found.

- Update foo/bar if new version with Composer 2.0 support available
- Contact author of foo/bar plugin
- Temporarily remove the requirement for the plugin to test

symfony/flex is compatible as of 1.8.0!

https://github.com/symfony/flex/pull/617

https://github.com/symfony/flex/pull/617

Nils Adermann
@naderman

ocramius/package-versions

- Compatible with Composer 2.0 as of 1.8.0
- requires PHP ^7.4

- composer require composer/package-versions-deprecated
- We forked the package, now compatible with PHP ^7.0
- replaces ocramius/package-versions

=> satisfies all requirements of ocramius/package-versions

- Building new code requiring runtime access to package info?

Runtime Composer Utilities
https://github.com/composer/composer/blob/master/doc/07-runtime.md

Automatically autoloaded in every Composer project

\Composer\InstalledVersions::isInstalled('vendor/package'); // returns bool

use Composer\Semver\VersionParser;
\Composer\InstalledVersions::satisfies(new VersionParser, 'vendor/package', '2.0.*');

https://github.com/composer/composer/blob/master/doc/07-runtime.md

Nils Adermann
@naderman

Autoloading Issues

Check deprecation warnings in Composer1

Class Foo\Bar located in ./src/SomeName/Bar.php does not comply with psr-4 autoloading standard.
It will not autoload anymore in Composer v2.0. in
phar:///usr/local/bin/composer/src/Composer/Autoload/ClassMapGenerator.php:18

Make sure directories match class names as defined in PSR-0/4.

How far along is Composer 2.0?

Nils Adermann
@naderman

Composer 2.0-alpha2 released June 24, 2020

- Works reliably in nearly all use cases

- A few refactorings and optimizations left before a beta/RC release

- 1.2% of packagist.org installs from Composer 2.0 within last 30 days

Nils Adermann
@naderman

Help us test Composer 2.0

composer self-update --preview

Updating to version 2.0.0-alpha2 (preview channel).
 Downloading (100%)
Use composer self-update --rollback to return to version 1.10.8

Just run it locally for now, your lock file is commited, no risk involved!

Back to v1? composer self-update --1

Nils Adermann
@naderman

Resources

- Changelog
https://github.com/composer/composer/blob/master/CHANGELOG.md

- Upgrade Guide
https://github.com/composer/composer/blob/master/UPGRADE-2.0.md

- Packagist Blog: Development Update (April 24, 2020)
https://blog.packagist.com/composer-2-development-update/

- Composer Plugin Readiness for 2.0
https://github.com/composer/composer/issues/8726

https://github.com/composer/composer/blob/master/CHANGELOG.md
https://github.com/composer/composer/blob/master/UPGRADE-2.0.md
https://blog.packagist.com/composer-2-development-update/
https://github.com/composer/composer/issues/8726

E-Mail: n.adermann@packagist.com
Twitter: @naderman

Questions / Feedback?

Private Packagist
https://packagist.com

mailto:n.adermann@packagist.com
http://twitter.com/naderman
https://packagist.com

