
Private Packagist
https://packagist.com

Nils Adermann
@naderman

SymfonyCon Brussels 2023

Get A Grip On Your Project's
Supply Chain

Supply Chain?

https://commons.wikimedia.org/wiki/File:Geely_assembly_line_in_Beilun,_Ningbo.JPG

Supply Chain

A supply chain is a complex logistics system that consists of facilities that
convert raw materials into finished products which are later distributed to
end consumers or end customers.

https://en.wikipedia.org/wiki/Supply_chain

https://en.wikipedia.org/wiki/Supply_chain

Supply Chain - But for Software?!

Raw materials Source code
Refining, processing, constructing Build process
Product components Dependencies, Hardware, Network
Assembly, logisitics Package management
Quality assurance QA / Tests / CI Service
Order fullfillment Deployment process

Take with a grain of salt - this comparison will only take you so far

Software Supply Chain

A software supply chain is composed of the components, libraries, tools, and
processes used to develop, build, and publish a software artifact.

https://en.wikipedia.org/wiki/Software_supply_chain

https://en.wikipedia.org/wiki/Software_supply_chain

Software Supply Chain

In other words:

The “full-stack” and all processes & tools involved in making and assembling it

Full-stack

Why should you care?

● Business Continuity

○ What if your datacenter is on fire?
○ What if your CI platform goes out of business?
○ What if a dependency isn’t maintained anymore?
○ What if a dependency is deleted?

● Security

○ Supply Chain Attacks

Supply Chain Attacks

● Heartbleed - https://heartbleed.com/ - 2014
○ The Heartbleed bug allows anyone on the Internet to read the memory of the systems

protected by the vulnerable versions of the OpenSSL software. This compromises the
secret keys used to identify the service providers and to encrypt the traffic, the names and
passwords of the users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to impersonate
services and users.

https://heartbleed.com/

Supply Chain Attacks

● Stuxnet
○ uncovered in 2010, likely as old as 2005
○ combination of 4 zero-days, Windows, Siemens Step7, introduced on USB drives
○ targetted PLCs (programmable logic controllers) with a rootkit
○ likely to have been built by USA and Israel to damage Iranian nuclear program

● SolarWinds Orion / 2020 United States federal government data breach
○ attackers gained entry to a build system, likely through a compromised Office 365 account
○ modified software updates to include remote access on any machine installing Orion
○ 18,000 customers including many parts of the US government affected
○ likely Russian attackers
○ discovered in December ‘20 after breach Sep ‘19

Supply Chain Attacks

● Log4Shell
○ https://en.wikipedia.org/wiki/Log4Shell
○ Log4j vulnerability, standard Java logging library
○ existed 2013 - November 24, 2021
○ Arbitrary code execution, extremely widely used, CVSS Score 10/10

https://en.wikipedia.org/wiki/Log4Shell

https://twitter.com/garybernhardt/status/1067111872225136640

Ownership of a
dependency was
transferred to a
bad actor

https://twitter.com/garybernhardt/status/1067111872225136640

Supply Chain Attacks

● Depublication of left-pad
○ https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-o

f-code
● PyPi Typosquatting with malicious code

○ https://blog.phylum.io/phylum-discovers-revived-crypto-wallet-address-replacement-attac
k/

● Public Travis CI Logs (Still) Expose Users to Cyber Attacks
○ https://blog.aquasec.com/travis-ci-security

● Malicious commits made to php-src in the name of Rasmus Lerdorf and
Nikita Popov

○ https://news-web.php.net/php.internals/113838

https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code
https://blog.phylum.io/phylum-discovers-revived-crypto-wallet-address-replacement-attack/
https://blog.phylum.io/phylum-discovers-revived-crypto-wallet-address-replacement-attack/
https://blog.aquasec.com/travis-ci-security
https://news-web.php.net/php.internals/113838

Other Supply Chain Problems

● Jira: Atlassian customers frustrated by weeks-long outage, lack of
communication from company

○ https://www.techrepublic.com/article/atlassian-customers-frustrated-by-weeks-long-outa
ge-lack-of-communication-from-company/

● Following theft of GitHub OAuth tokens from Heroku, GitHub resets tokens
but Salesforce takes weeks to reset passwords and restore functionality

○ https://www.zdnet.com/article/heroku-to-begin-user-password-reset-almost-a-month-after
-github-oauth-token-theft/

https://www.techrepublic.com/article/atlassian-customers-frustrated-by-weeks-long-outage-lack-of-communication-from-company/
https://www.techrepublic.com/article/atlassian-customers-frustrated-by-weeks-long-outage-lack-of-communication-from-company/
https://www.zdnet.com/article/heroku-to-begin-user-password-reset-almost-a-month-after-github-oauth-token-theft/
https://www.zdnet.com/article/heroku-to-begin-user-password-reset-almost-a-month-after-github-oauth-token-theft/

Supply Chain Attacks

“2020 State of the Software Supply Chain” by sonatype
https://www.sonatype.com/hubfs/Corporate/Software%20Supply%20Chain/2020/SON_SSSC-Report-2020_final_aug11.pdf#page=7

https://www.sonatype.com/hubfs/Corporate/Software%20Supply%20Chain/2020/SON_SSSC-Report-2020_final_aug11.pdf#page=7

Supply Chain Attacks

2021 Google Introduces SLSA “Supply-chain Levels for Software Artifacts” - https://slsa.dev/

https://slsa.dev/

Supply Chain Attacks

● $2,000 donations per year to OpenSSL
● $841 in 3 days after Heartbleed

● Creation of the Core Infrastructure
Initiative at the Linux Foundation, now
Open Software Security Foundation
(OpenSSF)

○ https://openssf.org/
○ > $10 million raised by 2021

● Germany: Sovereign Tech Fund
○ https://sovereigntechfund.de

https://openssf.org/
https://sovereigntechfund.de/

May 12, 2021
US Government acts: Executive Order 14028

● Introduces requirement for SBOM (Software Bill of Materials)
● Linux Foundation SPDX SBOMs

○ https://spdx.dev/
○ Can be exported directly from GitHub dependency graph

● OWASP CycloneDX
○ https://cyclonedx.org/
○ Composer plugin: cyclonedx/cyclonedx-php-composer

https://spdx.dev/
https://cyclonedx.org/

Get a Grip On Your Project’s Supply Chain

● Identifying your supply chain and documenting it
○ all tools and dependencies used: SBOMs
○ all services used: Who are the vendors? Use checklists to collect information
○ all processes and infrastructure used

● Risk analysis
○ probability of failure
○ impact of failure

https://twitter.com/dnlongen/status/1478737214179844100

https://twitter.com/dnlongen/status/1478737214179844100

Get a Grip On Your Project’s Supply Chain

● Risk mitigation
○ Regularly identify and upgrade outdated software

■ automate as much as possible
○ Audit your vendors

■ You can’t do everything yourself and are likely going to be worse at e.g. following
hardware security updates than a large cloud hoster

○ Select processes that reduce risk
■ deploy tested artifacts, rather than building during deploy which may differ from CI
■ prefer declarative state over modifying state over time

Composer Guide
to Supply Chain Security

Composer 2.4: composer audit

● composer audit Command
○ Lists vulnerable versions in composer.lock
○ Uses packagist.org vulnerability db API

■ GitHub advisory database
■ FriendsOfPHP/security-advisories

○ Returns non-zero if vulnerabilities found -> can check in CI

● composer update implies audit --format=summary
● composer require --dev roave/security-advisories:dev-latest

composer update vs. composer install

Packagist.org

● Metadata only
● No checksums for GitHub stored packages

○ https://github.com/sansecio/composer-integrity-plugin

● No signatures
○ https://www.drupal.org/project/infrastructure/issues/3325040 - Automatic Updates / TUF

● No way to upload code
● Packagist.org maintainer account takeover

https://blog.packagist.com/packagist-org-maintainer-account-takeover/
○ Editing of source URLs no longer allowed beyond 50k installs

https://github.com/sansecio/composer-integrity-plugin
https://www.drupal.org/project/infrastructure/issues/3325040
https://blog.packagist.com/packagist-org-maintainer-account-takeover/

Supply Chain Attacks

● Apr 13, 2022: Composer Command Injection Vulnerability
○ https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/
○ Code execution through Git or Mercurial branch names

● Apr 27, 2021: Composer Command Injection Vulnerability
○ https://blog.packagist.com/composer-command-injection-vulnerability/
○ Code execution through Mercurial repository URL injection

● Mar 11, 2021: Git Clone Security Vulnerability
○ https://blog.packagist.com/git-clone-security-vulnerability/
○ Git vulnerability on case insensitive filesystems can be exploited through Composer if you

clone dependencies

https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/
https://blog.packagist.com/composer-command-injection-vulnerability/
https://blog.packagist.com/git-clone-security-vulnerability/

So commit your vendor directory?

● Who here knows how to commit changes to the files?

So commit your vendor directory?

● Who here knows how to commit changes to the files?
○ git add vendor/ will not delete files, can lead to bugs and security issues
○ Must use git add -A vendor/

● vendor directory contents can diverge from expected content
○ How do you verify vendor directory contents match the lock file?

■ e.g. are deleted packages really deleted?

● Managing conflicts in larger teams gets even harder than managing lock
file contents

So commit your vendor directory?

● Bad Actor scenarios, e.g. disgruntled employee
○ Scenarios

■ Could place code in unmanaged directory in vendor looking like a dependency
■ Could modify code of existing package in vendor/

○ Would your review process catch these as part of a large update commit?
○ If not, do you have tooling to notice the discrepancy?

■ Is building this tooling less work/cheaper than using a private Composer repository?

Generally: No, don’t commit the vendor directory

Use your own Composer repository

- Satis
- JFrog Artifactory
- Sonatype Nexus Repository
- Cloudsmith
- GitLab Package Registry
- …

- Private Packagist

Private Packagist

- Stores a copy of all used versions of your dependencies
- Safe from deletion
- Safe from modification

- Serves package metadata and code

- Possible with some alternatives but usually with more effort and less
convenience

- e.g. copy all dependencies into git repositories, how do you keep those updated then?

Public packagist.org / GitHub

Private Packagist

Update Dependencies Frequently

● Set up a schedule or regular reminder to run dependency updates
● Set up alerting when vulnerabilities are discovered in your dependencies

○ GitHub Dependabot
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependa
bot-alerts

○ Snyk
https://snyk.io/product/open-source-security-management/

○ Private Packagist Security Monitoring
https://packagist.com/features/security-monitoring

https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependabot-alerts
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependabot-alerts
https://snyk.io/product/open-source-security-management/
https://packagist.com/features/security-monitoring

Update Dependencies Frequently

Better yet: Automate your updates

○ Mend Renovate https://www.mend.io/renovate/
○ GitHub Dependabot https://github.com/dependabot
○ (WIP: Private Packagist Automated Updates)

Get a pull request anytime an update is necessary

https://www.mend.io/renovate/
https://github.com/dependabot

NOT DEV

Caution!

Private Packagist
Update Review

GitHub
BitBucket
GitLab

Composer Plugins & Scripts

● Composer 2.2 introduced a requirement to explicitly enable plugins
○ config.allow-plugins
○ protects you from unintentionally executing malicious code before reviewing

composer.lock changes

● Scripts & plugin selection is limited to root composer.json
○ Protects from attacks by malicious maintainers, dependency confusion or other accidental

dependencies
○ You still have to review your lock file changes!

Recommended use of Composer in your
Deployment Process

- commit composer.lock
- CI/CD

- run composer install (not update!)
- generate any potentially generated code
- package everything into an archive

- deployment
- upload to production servers, move in place
- run composer check-platform-reqs
- dump an optimized autoloader
- switch webserver to use new code

Result

- no surprises in production
- same dependency versions as tested
- no risk of composer conflicts during

deploy
- code doesn’t change at runtime

- deploying to multiple servers
- exact same state everywhere
- no unnecessarily repeated work

E-Mail: contact@packagist.com
X: @naderman Mastodon: @naderman@phpc.social

Questions / Feedback?

Private Packagist
https://packagist.com

mailto:contact@packagist.com
https://twitter.com/naderman
https://phpc.social/@naderman

