
2.0

Private Packagist
https://packagist.com

Nils Adermann
@naderman

Jordi Boggiano
@seldaek

Composer 2.0 was released October 24, 2020

- Development began summer 2018

- 28 code contributors

- Many more helpers reporting issues,
commenting, and testing
pre-releases

- Made possible by Private Packagist
and its customers

Thank you!

Goals for 2.0

- Performance Improvements
- Better reproducibility

- Most serious 1.x bugs are edge cases which are difficult to debug and hard to
reproduce

- Better error reporting
- New features which become easier to add by BC breaks/refactoring

- Keep upgrading as painless as possible

Why 2.0 at all and not 1.x?

Improving Performance

- What makes Composer slow?
- I/O

- Network
- Metadata JSON downloads
- Package file downloads

- Memory access
- Writing, accessing and modifying GBs of memory

- CPU
- Sequential unpacking of code archives

Improving Performance

What does Composer use memory for?

- JSON representation of every version of every package that may fit your requirements
- representation of dependencies/conflicts for SAT solver between all of these

packages

Solutions

- Reduce number of package versions which “may fit my requirements”
- Represent dependencies/conflicts more efficiently

Reduce number of package versions which “may fit my requirements”

- Composer 1 lazy loads packages while creating memory representation of dependencies
- Idea: Solver only loads what it needs when it gets to that point
- Problems

- Solver just waits for same info at a later point
- Impossible to reduce set of packages before generating dependencies
- Parallelized network access becomes hard to manage

Composer 2.0 refactors process into multiple clearly separated steps:

- Recursively download metadata only for package versions which may really get installed
- Reduce number of package versions in memory as far as possible
- Generate solver memory representation of dependencies

 => BC Break (for plugins) => 2.0

Represent dependencies/conflicts more efficiently

SAT Solver takes boolean expressions, e.g.

foo/bar 1.0 requires baz/qux ^2.0 (- foo/bar 1.0 | baz/qux 2.0.0 | baz/qux 2.0.1 | baz/qux 2.1.0)
foo/bar 1.0 conflicts with baz/qux ^2.0 (- foo/bar 1.0 |- baz/qux 2.0.0) & (- foo/bar 1.0 |- baz/qux 2.0.1) &

(- foo/bar 1.0 |- baz/qux 2.1.0)

You can only install one version of a package
=> automatically generate a conflict for each pair of versions

foo/bar 1.0, 1.1, 1.2 (- foo/bar 1.0 |- foo/bar 1.1) & (- foo/bar 1.0 |- foo/bar 1.2) &
(- foo/bar 1.1 |- foo/bar 1.2)

Extreme Growth =
Symfony

3 versions 6 versions 100 versions 500 versions 1000 versions
Composer 1 3 rules 15 rules 4,950 rules 124,750 rules 499,500 rules
Composer 2 1 rule 1 rule 1 rule 1 rule 1 rule

Composer 2.0 uses a special single multi conflict rule representation for all of these rules

foo/bar 1.0, 1.1, 1.2 oneof(foo/bar 1.0, foo/bar 1.1,foo/bar 1.2)

Improving Performance: Network

- JSON Metadata & Package archive downloads

- Parallelization of HTTP requests with curl multi
- Use of HTTP/2 features to reduce server round-trips
- More reliable and feature complete than Composer 1 plugin implementations

(hirak/prestissimo, symfony/flex) which were limited by plugin interface

- Packagist.org protocol improvements

- Reduced amount of data transferred
- Improved cacheability by splitting dev versions from releases
- Stability improvements to packagist.org infrastructure

Note: Improvements require ext-curl (usage stats: installed on 97% of composer user systems)

Improving Performance: Archive Extraction

- Composer 2.0 unzips all downloaded archives in parallel

- Requires Linux/OS X/WSL

- Requires “unzip” CLI command in $PATH

Improving Performance

- What makes Composer slow?
- I/O ✔

- Network ✔
- Metadata JSON downloads ✔
- Package file downloads ✔

- Memory access ✔
- Writing, accessing and modifying GBs of memory ✔

- Reduce number of package versions which “may fit my requirements” ✔
- Represent dependencies/conflicts more efficiently ✔

- CPU ✔
- Sequential unpacking of code archives ✔

Benchmarks

- https://blog.packagist.com/composer-2-0-is-now-available/ by Jordi - @seldaek
Updates: 60% less time

- https://susi.dev/composer2-perf by Susey - @sasunegomo
Installs: 44% less time
Updates: 80% less time 81% less memory (1.15GB to 244MB)

- https://developers.ibexa.co/blog/benchmarks-of-composer-2.0-vs-1.10
by Jani Tarvainen - @velmu

Installs: 27% less time
Updates: 50% less time 72% less memory (2.5GB to 711MB)

Partial Update (composer require):
23% less time 88% less memory (648MB to 81MB)

https://blog.packagist.com/composer-2-0-is-now-available/
https://susi.dev/composer2-perf
https://developers.ibexa.co/blog/benchmarks-of-composer-2.0-vs-1.10

Better Reproducibility:

composer update
vs

composer install

Separating update & install

Separating update & install

vendor
symfony/http-foundation: 5.1.8 previous local upgrade attempt

composer.lock
symfony/http-foundation: 4.4.16 old production state

composer.json
symfony/http-foundation: 5.0.* limited upgrade for now, because of 5.1 issues

naderman@saumur:~/projects/composer/test/symfony-http-foundation$ composer update
Loading composer repositories with package information
Updating dependencies
Lock file operations: 0 installs, 1 update, 0 removals
 - Upgrading symfony/http-foundation (v4.4.16 => v5.0.11)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 3 installs, 1 update, 1 removal
 - Removing symfony/deprecation-contracts (v2.1.3)
 - Installing symfony/polyfill-php72 (v1.17.0): Extracting archive
 - Installing symfony/polyfill-intl-idn (v1.17.1): Extracting archive
 - Installing symfony/mime (v5.1.8): Extracting archive
 - Downgrading symfony/http-foundation (v5.1.8 => v5.0.11): Extracting archive
Generating autoload files
6 packages you are using are looking for funding.
Use the `composer fund` command to find out more!

New Features

Ignoring specific platform requirements

Trying to test your project on PHP8?

composer update --ignore-platform-reqs
Installs on PHP8
May install packages requiring PHP extensions you do not have

composer update --ignore-platform-req=php
Installs on PHP8
Checks all extension requirements as usual

On deploy always run:
composer check-platform-reqs

Partial Updates to specific versions

// composer.json
 "require": {
 "symfony/http-foundation": “^4.0 || ^5.0",
 }

// composer.lock
 "packages": [{
 "name": "symfony/http-foundation",
 "version": "v4.4.16",

$ composer update symfony/http-foundation:5.0.*
Loading composer repositories with package information
Updating dependencies
Lock file operations: 0 installs, 1 update, 0 removals
 - Upgrading symfony/http-foundation (v4.4.16 => v5.0.11)
Writing lock file
Installing dependencies from lock file (including require-dev)
Package operations: 0 installs, 1 update, 0 removals
 - Downloading symfony/http-foundation (v5.0.11)
 - Upgrading symfony/http-foundation (v4.4.16 => v5.0.11): Extracting archive

Repository Priorities

- Repositories are canonical by default:
- First repository which has a package for a given name wins
- to restore old behavior of merging package versions use

“canonical”: false

- Limit packages a repository can provide

{
 “type”: “composer”,
 “url”: “https://some-third-party.com/composer-repo/”,
 “only”: [“foo/*”, “bar/baz”],
 “exclude”: [“foo/qux”]
}

https://some-third-party.com/composer-repo/

Upgrading your projects

Best Case

composer self-update --2
composer update / composer install

No errors, everything works as before.

Upgrading issues with plugins

foo/bar requires composer-plugin-api ^1.0.0 -> no matching package found.

- Update foo/bar if new version with Composer 2.0 support available
- Contact author of foo/bar plugin
- Temporarily remove the requirement for the plugin to test

symfony/flex is compatible as of 1.9.8!

https://github.com/symfony/flex/pull/617

https://github.com/symfony/flex/pull/617

ocramius/package-versions

- Compatible with Composer 2.0 as of 1.8.0
- requires PHP ^7.4

- composer require composer/package-versions-deprecated
- We forked the package, now compatible with PHP ^7.0
- replaces ocramius/package-versions

=> satisfies all requirements of ocramius/package-versions

- Building new code requiring runtime access to package info?

Runtime Composer Utilities https://github.com/composer/composer/blob/master/doc/07-runtime.md
- Automatically autoloaded in every Composer project

\Composer\InstalledVersions::isInstalled('vendor/package'); // returns bool

use Composer\Semver\VersionParser;
\Composer\InstalledVersions::satisfies(new VersionParser, 'vendor/package', '2.0.*');

https://github.com/composer/composer/blob/master/doc/07-runtime.md

Autoloading Issues

Check deprecation warnings in Composer 1

Class Foo\Bar located in ./src/SomeName/Bar.php does not comply with psr-4 autoloading
standard.
It will not autoload anymore in Composer v2.0. in
phar:///usr/local/bin/composer/src/Composer/Autoload/ClassMapGenerator.php:18

Make sure directories match class names as defined in PSR-0/4.

How far along is Composer 2.0?

Fast Adoption

- Composer 2.0 on packagist.org

- 35% of installs in November 2020

- 20% of updates in November 2020

Stable

- Current release 2.0.8

- Open issues are mostly uncommon edge cases

- Works well in production for large numbers of developers

Upgrade to Composer 2.0 now!

composer self-update --2

Updating to version 2.0.x (2.x channel).
 Downloading (100%)
Use composer self-update --rollback to return to version 1.10.17

Your lock file is commited, no risk involved in trying it locally!

Back to v1? composer self-update --1

Feedback

packagist.org Bandwidth

- Composer 2 reduced bandwidth from 74 TB/week to 58 TB/week so far

- We want everyone to upgrade Composer right now
So Composer 2 supports PHP down to 5.3

What’s next?

- Requiring PHP 7.1 in Composer 2.2

- Drop for external PHP5 support, internal refactorings only

- Composer 2.1 will receive long term bug/security fixes

- Disabling Composer 1 support on packagist.org

- Date depends on usage, please upgrade!

Resources

- Packagist Blog: Composer 2.0 is now available!
https://getcomposer.org/2

- Changelog
https://github.com/composer/composer/releases/tag/2.0.0

- Upgrade Guide
https://github.com/composer/composer/blob/master/UPGRADE-2.0.md

- Composer Plugin Readiness for 2.0
https://github.com/composer/composer/issues/8726

https://getcomposer.org/2
https://github.com/composer/composer/releases/tag/2.0.0
https://github.com/composer/composer/blob/master/UPGRADE-2.0.md
https://github.com/composer/composer/issues/8726

E-Mail: contact@packagist.com
Twitter: @seldaek & @naderman

Questions / Feedback?

Private Packagist
https://packagist.com

mailto:contact@packagist.com
https://twitter.com/seldaek
https://twitter.com/naderman

