
Supply Chain
Security
in Drupal and Composer

Neil Drumm
Senior Technologist
Drupal Association

Nils Adermann
Composer &

Private Packagist

Christopher Gervais
Founding Partner

Consensus Enterprises

What is a
software supply chain?

https://commons.wikimedia.org/wiki/File:Geely_assembly_line_in_Beilun,_Ningbo.JPG

A software supply chain is composed of the components,
libraries, tools, and processes used to develop, build, and

publish a software artifact.

https://en.wikipedia.org/wiki/Software_supply_chain

https://en.wikipedia.org/wiki/Software_supply_chain

In other words:

The “full-stack” and all processes & tools involved in making
and assembling it

● Heartbleed - https://heartbleed.com/ - 2014
○ OpenSSL: System memory accessible externally

● SolarWinds Orion / 2020 United States federal government data breach
○ attackers gained entry to a build system, likely through a compromised Office 365 account
○ modified software updates to include remote access on any machine installing Orion
○ discovered in December ‘20 after breach Sep ‘19

● Log4Shell
○ https://en.wikipedia.org/wiki/Log4Shell
○ Log4j vulnerability, standard Java logging library
○ existed 2013 - November 24, 2021
○ Arbitrary code execution, extremely widely used, CVSS Score 10/10

● XZ Utils / liblzma
○ https://en.wikipedia.org/wiki/XZ_Utils_backdoor
○ Introduced by covert malicious maintainer
○ Backdoor in compression library running in OpenSSH process granting remote access
○ Fortunately detected very early in distribution on March 29th

Supply Chain Attacks

https://heartbleed.com/
https://en.wikipedia.org/wiki/Log4Shell
https://en.wikipedia.org/wiki/XZ_Utils_backdoor

Composer &
packagist.org

● Mar 11, 2021: Git Clone Security Vulnerability
○ https://blog.packagist.com/git-clone-security-vulnerability/
○ Git vulnerability on case insensitive filesystems can be exploited through Composer if you clone

dependencies

● Apr 27, 2021: Composer Command Injection Vulnerability
○ https://blog.packagist.com/composer-command-injection-vulnerability/
○ Code execution through Mercurial repository URL injection

● Apr 13, 2022: Composer Command Injection Vulnerability
○ https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/
○ Code execution through Git or Mercurial branch names

Composer Supply Chain Vulns

https://blog.packagist.com/git-clone-security-vulnerability/
https://blog.packagist.com/composer-command-injection-vulnerability/
https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/

● May 19, 2022: GitHub Repo Jacking
○ Attacker registered GitHub username of former maintainer
○ Republished package with malicious code to steal AWS credentials
○ https://thehackernews.com/2022/05/pypi-package-ctx-and-php-library-phpass.html
○ https://github.blog/2024-02-21-how-to-stay-safe-from-repo-jacking/

■ Problematic with VCS repo URL references in composer.json too
○ Packagist.org uses GitHub repo ids: https://github.com/composer/packagist/pull/1411

● May 1, 2023: Packagist.org maintainer account takeover
○ https://blog.packagist.com/packagist-org-maintainer-account-takeover/
○ Editing of source URLs no longer allowed beyond 50k installs

Composer Supply Chain Attacks

https://thehackernews.com/2022/05/pypi-package-ctx-and-php-library-phpass.html
https://github.blog/2024-02-21-how-to-stay-safe-from-repo-jacking/
https://github.com/composer/packagist/pull/1411
https://blog.packagist.com/packagist-org-maintainer-account-takeover/

● packagist.org metadata provider only
○ code comes from maintainer supplied URL on the internet
○ No checksums for code from GitHub (> 99% of packages)
○ No signatures from maintainers
○ But: No way to upload artifacts

● positive:
○ Everything over TLS
○ Installation from GitHub source archive URLs improves trust in

artifacts
○ Smaller attack surface on packagist.org

Composer Supply Chain Security

● composer audit command
○ Lists vulnerable versions in composer.lock
○ Uses packagist.org vulnerability db API

■ GitHub advisory database
■ FriendsOfPhp/security-advisories

○ Uses packages.drupal.org vulnerability info

● composer update implies audit --format=summary
● composer require --dev roave/security-advisories:dev-latest

Composer 2.4: composer audit

● Doesn’t work because
○ Still need to update deps

■ still use the package manager to update vendor’d deps
■ or download everything manually

● Lots of error prone work
● Hard to spot issues like repo jacking

○ easy to miss removing files that was removed by vendors
○ managing conflicts harder than conflicts in lock file
○ bad actor, e.g. disgruntled employee

■ unmanaged directory hiding attack code in vendor/ tree
■ attack code in small modifications hidden in big update to vendor/ tree

● Instead: Run your own Composer repository

Private Packagist Artifactory Nexus Repository others Drupal

Why is vendoring the
wrong answer?

Drupal’s Automatic
Updates Initiative

● Automate updates using Composer

● We want to be sure updates install what is intended

● The Update Framework (TUF) specification for update systems

Automatic Updates for Drupal

packages.
drupal.org

Rugged
TUF server

PHP-TUF
integration

plugin

Package
manager

Automatic
updates

Project
browser

Drupal.org server Composer Drupal modules

● Create module/theme release → queues packaging

● Package zip & tar.gz files

● Update packages.drupal.org metadata for Composer

● Send zip & metadata to Rugged

● Rugged updates TUF metadata

Packaging Drupal.org projects

● Create release → queues packaging

● Subtree splitting to components & templates on GitHub

● Packagist.org handles metadata like any other GitHub project

● packagist-signed.drupalcode.org is a Satis mirror

● Send zip & metadata to Rugged

● Rugged updates TUF metadata

Packaging Drupal core

● General projects with composer.json & a release on

Drupal.org

● Git push → notify Packagist.org to update metadata

● packagist-signed.drupalcode.org is a Satis mirror

● Send zip & metadata to Rugged

● Rugged updates TUF metadata

Packaging general projects

Package
Verification
Public-key Cryptography,

Digital Signatures & Hash Functions

(just the basics)

To send a letter, you need:

 - my address (PUBLIC)

To read the letter, I need:

 - my mailbox key (PRIVATE)

N.B. This does NOT work in
reverse

Asymmetry (real-world example)

Using very complex math, a large random
number is used to generate a key pair.

A key pair consists of two files each
containing a long string of characters.

Regardless of which one we use to
encrypt a message, only the other one
can be used to decrypt it.

N.B. Either key, used to encrypt a
message, CANNOT decrypt that
message.

Key pairs (key generation)

Key generation function

Random
number

Public
key

Private
key

To encrypt a message, you need:

 - my public key (PUBLIC)

To decrypt the message, I need:

 - my private key (PRIVATE)

N.B. The message is secret

Asymmetry (encrypt/decrypt)

To sign a message, I need:

 - my private key (PRIVATE)

To verify the signature, you need:

 - my public key (PUBLIC)

N.B. The message is not secret

Asymmetry (sign/verify)

public

private

One-way program that scrambles text.

The hash sum cannot be unscrambled.

The same input always results in the same
hash sum.

Different input always* results in a different
hash sum.

N.B. This can prove that the input has not
been altered

Hash Functions

* effectively always

Hash
function

The red fox
runs across

the ice
DFCD3454

Input Hash sum

Hash
function

The red fox
walks across

the ice
52ED879E

Hash
function

The blue fox
runs across

the ice
46042841

Packaging pipeline generates
a zip file of an updated module

TUF server generates a hash of
the zip file and signs metadata

Composer downloads zip file

Composer TUF plugin verifies
zip file against TUF metadata

Package Verification
TUF

Server

Composer
TUF Plugin

Packaging
Pipeline

Composer

private

zip file / hash sum TUF metadata

keys

keys

public

The Update
Framework (TUF)

Trust
 Compartmentalize signing authority
 that expires if not renewed.

Compromise Resilience
 Use multiple keys. Minimize trust placed
 in online keys. Easy recovery/remediation.

Integrity
 Verify downloaded files are intact, and that the
 repository overall is correct.

Freshness
 Verify that the latest versions of files are
 available and recognize when a problem occurs.

Implementation Safety
 The design of TUF itself must not introduce
 new attack vectors.

Design Principles

Root Metadata (n.root.json):
 Specifies which keys are trusted for signing
 each of the other metadata; chain of trust.

Timestamp Metadata (timestamp.json):
 Ensures the freshness of the TUF metadata.
 Minimizes unnecessary downloads of metadata.

Snapshot Metadata (snapshot.json):
 Ensures the integrity of the TUF Targets
 metadata.

Targets Metadata (targets.json):
 Ensures the integrity of the software packages.
 Supports hashed bins and other delegations.

TUF Metadata (principles)

Trust &
compromise resilience

Freshness &
repository integrity

Repository integrity &
implementation safety

Download integrity &
implementation safety

n.root.json:
 Specifies trusted keys
 for the other top-level roles.

timestamp.json:
 Lists hash, size, and version
 number of the snapshot file.

snapshot.json:
 Lists hash, size and version
 numbers of all target metadata files

targets.json:
 Lists hashes and sizes of
 target files.

TUF Metadata (implementation)

{
 "signatures": [
 {"keyid": "44c6…", "sig": "5783…"}
],
 "signed": {
 "_type": "targets",
 "expires": "2024-09-23T20:17:06Z",
 "spec_version": "1.0.31",
 "targets": {
 "test1.txt": {

"hashes": { "sha256": "634b…" },
"length": 6

 }
 },
 "version": 2
 }
}

Rugged TUF Server

Rugged is a server-side implementation
of The Update Framework (TUF)

Rugged aims to make generating
TUF metadata simple, and robust

Development sponsored by the
Drupal Association

OSTIF security audit, in January 2024,
found no vulnerabilities

Rugged TUF Server

Command-line (CLI) tool (rugged):
- Initialize TUF repository
- Key-management tasks (n.root.json)
- Status reporting and logs
- Other manual maintenance operations

Worker daemons:
• targets-worker signs targets.json
• snapshot-worker signs snapshot.json
• timestamp-worker signs timestamp.json
• monitor-worker scans for new targets,

periodically refreshes metadata expiry
• root-worker initializes TUF repository,

generates online keypairs

Rugged Components

Packaging pipeline

Rugged TUF Server
TIME

Targets worker

Rugged TUF Server
TIME

Snapshot worker

Rugged TUF Server
TIME

Timestamp worker

Rugged TUF Server
TIME

Update and sign
Timestamp metadata

Client-side
TUF Verification

 PHP-TUF & Composer Integration Plugin

PHP-TUF is a PHP implementation of The
Update Framework (TUF).

Primarily focused on supporting secure
automated updates for PHP CMSes.

Development sponsored by Acquia, with
support from Drupal Association,
TYPO3 & Joomla.

OSTIF security audit, in January 2024,
found no significant vulnerabilities

PHP-TUF Library

PHP-TUF Composer Integration Plugin
adds TUF security to Composer's
package discovery process, and
packages selected for download.

Expect a slowdown when TUF is enabled.

Development sponsored by Acquia, with
support from Drupal Association,
TYPO3 & Joomla.

OSTIF security audit, in January 2024,
found no significant vulnerabilities

Composer Plugin

Current Status

● Server-side components are in production & need testing

● Rugged and PHP-TUF have been formally security reviewed

● Ready for testing drupal.org/project/automatic_updates

● Package manager module → Drupal core

drupal.org/i/3319030

● Slack #autoupdates

Drupal Automatic
Updates status

https://www.drupal.org/project/automatic_updates/
https://www.drupal.org/project/drupal/issues/3319030

Join us for contribution opportunities!

Mentored
Contribution

First Time
Contributor Workshop

General
Contribution

27 September:
09:00 – 18:00

Room 111

24 September: 16:30 - 17:15
Room BoF 4 (121)

25 September: 11:30 - 12:15
Room BoF 4 (121)

27 September: 09:00 - 12:30
Room 111

24-26 September: 9:00 - 18:00
Area 1

27 September: 09 - 18:00
Room 112

#DrupalContributions

Please fill out the Individual session survey
(in the Mobile App using QR code)

What did you think?

Title

Title

Title

Title

Title

